skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xuemei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background:Science internships have been suggested as a powerful way to engage high school students in conducting authentic science inquiry. However, despite the recognized significance of high school science internships, little research is done to examinehowthese experiences affect high school students’ career choices.Purpose:Our study drew on the theoretical framework of social cognitive career theory to examine how a 7-month science internship might shape high school students’ career choices.Method:88 students were interviewed 6–8 months after their internship graduation.Findings:The analysis suggests that the science internships altered more than 90% of the participating students’ career choices by either enhancing, expanding, narrowing down, or even replacing their original career choices. Students reported that the science internships boosted their self-efficacy through their first-hand mastery of authentic STEM practices, by directly observing scientists’ STEM performance, by hearing scientists’ opinions on students’ capabilities and potential in STEM, and by the impact of the students’ own physiological and affective states on the STEM practices.Implications:These findings help educators better understand how a unique learning environment like science internship may influence high school students’ career choices; they have important implications for internship design, career counseling, and education policy. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  2. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less
  3. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less
  4. Abstract Among the various environmental factors that affect isoprene emissions, drought has only been given limited attention. Four different drought response (DR) schemes were implemented in the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1), and the Community Multiscale Air Quality (CMAQ) model was applied to investigate the drought impacts on air quality during both drought and normal years in China. Generally, all DR schemes decrease isoprene emissions except for mild drought conditions. The significant decrease and even termination of isoprene emissions are predicted in South China under severe drought conditions. During the drought period, the DR scheme considering both mild and severe drought (SMD) improves the model performance especially in severe drought‐hit regions when compared with the Ozone Monitoring Instrument (OMI) averaged formaldehyde vertical column density (HCHO VCD). The results show that most of the DR schemes decrease simulated ozone (O3) and secondary organic aerosols (SOA) levels. For both O3and SOA, noticeable changes are predicted in the Sichuan Basin (5 ppb and 4 µg m−3for O3and SOA, respectively). This investigation is the first modeling study to investigate the impacts of isoprene drought response on air quality in China. 
    more » « less